Kernel-based conditional canonical correlation analysis via modified Tikhonov regularization
نویسندگان
چکیده
منابع مشابه
Semi-supervised Laplacian Regularization of Kernel Canonical Correlation Analysis
Kernel canonical correlation analysis (KCCA) is a dimensionality reduction technique for paired data. By finding directions that maximize correlation, KCCA learns representations that are more closely tied to the underlying semantics of the data rather than noise. However, meaningful directions are not only those that have high correlation to another modality, but also those that capture the ma...
متن کاملAn Operator Viewpoint to Analysis of Conditional Kernel Canonical Correlation
Kernel canonical correlation analysis (CCA) is a nonlinear extension of CCA, which aims at extracting information shared by two random variables. In this paper, a new notion of conditional kernel CCA is introduced. Conditional kernel CCA aims at analyzing the effect of variable Z to the dependence between X and Y . Rates of convergence of an empirical normalized conditional cross-covariance ope...
متن کاملKernel Generalized Canonical Correlation Analysis
A classical problem in statistics is to study relationships between several blocks of variables. The goal is to find variables of one block directly related to variables of other blocks. The Regularized Generalized Canonical Correlation Analysis (RGCCA) is a very attractive framework to study such a kind of relationships between blocks. However, RGCCA captures linear relations between blocks an...
متن کاملSparse Kernel Canonical Correlation Analysis
We review the recently proposed method of Relevance Vector Machines which is a supervised training method related to Support Vector Machines. We also review the statistical technique of Canonical Correlation Analysis and its implementation in a Feature Space. We show how the technique of Relevance Vectors may be applied to the method of Kernel Canonical Correlation Analysis to gain a very spars...
متن کاملOn the Regularization of Canonical Correlation Analysis
By elucidating a parallel between canonical correlation analysis (CCA) and least squares regression (LSR), we show how regularization of CCA can be performed and interpreted in the same spirit as the regularization applied in ridge regression (RR). Furthermore, the results presented may have an impact on the practical use of regularized CCA (RCCA). More specifically, a relevant cross validation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2016
ISSN: 1063-5203
DOI: 10.1016/j.acha.2015.04.006